Lesson 10. Cylinders and Quadric Surfaces, cont.

1 Today...

- A special family of surfaces in 3D space

2 Quadric surfaces

- Ellipsoid

- Equation: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
- All traces are ellipses
- If $a=b=c$, the ellipsoid is a sphere
- Elliptic paraboloid

- Equation: $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
- Horizontal traces are ellipses
- Vertical traces are parabolas
- The variable raised to the first power indicates the axis of the paraboloid

- Hyperbolic paraboloid

- Equation: $\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$
- Horizontal traces are hyperbolas
- Vertical traces are parabolas
- The case when $c<0$ is illustrated
- Cone

- Equation: $\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
- Horizontal traces are ellipses
- Vertical traces are planes or hyperbolas

- Hyperboloid of one sheet

- Equation: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
- Horizontal traces are ellipses
- Vertical traces are hyperbolas
- Hyperboloid of two sheets

- Equation: $-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
- Horizontal traces (when $z=k$) are ellipses if $k>c$ or $k<-c$
- Vertical traces are hyperbolas
- Equations given above are in "standard form"
- May need to do some algebra to get an equation into standard form
- Equations given above are for surfaces that are symmetric about the z-axis
- May need to switch the variables around to match an equation with the surface type

Example 1. Sketch the quadric surface $z=x^{2}-\frac{y^{2}}{4}$. What is this quadric surface called?
Hint. Draw traces for this surface when $y=0, x=0, x=1$, and $x=-1$.

Example 2. Sketch the quadric surface $x^{2}+y^{2}-z^{2}=1$. What is this quadric surface called? Hint. Draw traces for this surface when $z=0, x=0$, and $y=0$.

Example 3. Identify and sketch the quadric surface $4 x^{2}+y^{2}-2 z^{2}+4=0$ by matching the equation to the standard equations given above.

Example 4. Identify and sketch the quadric surface $2 y^{2}=x^{2}+4 z^{2}$ by matching the equation to the standard equations given above.

